
1 Oscillating rope
A) It is evident from the figure that the curvature of the rope
in the fundamental vibration is very small. It infers for a
possibility to model the fundamental vibration as a swinging
of a rigid uniform rod of length L about a pivot point at its
end. The moment of inertia of the rod is:

I = mL2/3

and the distance from the center-of-mass to the pivot point
is:

b = L/2

Therefore, the frequency of the fundamental vibration is ap-
proximated as:

f1 =
1

2π

√
mgb/I =

1

2π

√
3g/2L ≈ 0.61 Hz

Correspondingly, the period of the fundamental vibration is:

T1 = 2π
√
I/mgb = 2π

√
2L/3g ≈ 1.6 s

B) Whatever model for estimating of f1 is being used, one
may deduce on the basis of dimensionality arguments that
the k-th natural frequency of the rope is:

fk = ck
√
g/L

where ck is a dimensionless numeric coefficient depending on
the consecutive mode number k only. Let A and B be the
suspension point and the free end of the rope respectively, and
N be the node on the rope for the second natural vibration
(see the figure).

Since the node point is at rest (in the small-amplitude ap-
proximation), the vibration of the part NB could be con-
sidered as a fundamental vibration of a rope of length LNA
about a suspension point N . Therefore:

f2(L) ≡ f1(L−NA)

Hence one may write:

f2(L)

f1(L)
=

f1(L−NA)

f1(L)
=

√
L

L−NA

Since the absolute displacement is much smaller than the
length of the rope, the distances could be measured in a ver-
tical direction, to the ceiling, instead along the rope. There-
fore, by taking L = 1 m, and NA ≈ 0.8 m, we obtain:

f2
f1

≈ 2.2

Similarly, the vibration of the part N1B in the third eigen-
mode is equivalent to the second natural vibration of a rope
of length L−N1A ≈ 0.4 m. In analogy to the first case:

f3(L) ≡ f2(L−N1A)

and
f2(L)

f1(L)
=

f2(L−N1A)

f2(L)
=

√
L

L−N1A
≈ 1.6

Therefore:
f3/f1 = f2/f1 × f3/f2 ≈ 3.5

Finally:
f1 : f2 : f3 ≈ 1 : 2.2 : 3.5

2 Disk in gas
The initial pressure on the thermal insulating layer is P0 =
nkBT0, where n is number density of the gas. It originates
from multiplying the flux j0 ∝ vx0 and momentum that one
molecule transfers p0 = 2mvx0 (elastic collision), where vx0 is
the normal component of molecule’s velocity, and taking the
average (2v2x0 ∝ T0). When applying the same idea to the
surface with good thermal contact, we find out that the flux
remains the same, although the momentum increases:

p1 = m(vx0 + vx1) ≈ mvx1,

where vx1 is the normal velocity component of the molecule
flying away from the disk. Thus for pressure P1:

P1

P0
=

vx0vx1

2v2x0
≈

√
T1T0

T0
,

which is correct to some numerical coefficient of the order of
one.

The net force acting on the disk:

F = (P1 − P0)S ≈ SnkB
√
T0T1,

and then the initial acceleration:

a0 ≈ SnkB
M

√
T0T1 =

SρkB
mM

√
T0T1.



Since P1 ≫ P0, the disk will accelerate until its speed be-
comes of the order of average gas molecules speed. After the
velocity v of the disc becomes on the order of v0 =

√
kT0/m,

the flux of molecules reaching the backside j(v) decays faster
than exponentially due to the nature of the molecular velocity
distribution in the ideal gas (for example, j(2v0) ≈ 10−3j0
and j(3v0) ≈ 10−6j0). That leads to a proportional decrease
in a propelling pressure P1. In order to compensate for an
initial bias

√
T1/T0 ≈ 30, it will take around a factor of one

on the velocity of the disk. Therefore the maximum velocity
of the disk:

vmax ≈ v0 =

√
kBT0

m
.

Here we assumed that the disk will not cool close to T0

before it reaches the maximum velocity. Let us show it. The
acceleration time is approximately:

ta ≈ vmax

a0
≈ M

√
mkBT0

SρkB
√
T0T1

=
M

ρS

/√
kBT1

m

Since the power of heat removal Pth is maximal at the be-
ginning (at zero velocity), we can upper-bound estimate the
time for the disk to cool as tc = Q/Pth, where Q is the total
heat of the disk. The initial thermal power of heat removal
can be estimated as:

Pth ≈ Sj0 × kBT1 ≈ SnkB
√

T0T1

√
kBT1

m

and the total heat Q ≈ NkBT1. Given M ≈ Nm, we obtain:

tc ≈
(M/m)kBT1

SnkBT1

√
kBT0/m

=
M

ρS

/√
kBT0

m

Finally, ta/tc ≈
√
T0/T1 ≪ 1, and indeed disk will not cool

significantly before it reaches the velocity about v0.

Grading scheme. Indented lines show partial points for
partially correct solutions

Initial acceleration (5 pts)

P0 = nkT = j0 ×∆p0, ∆p0 = 2mvx0 . . . . . . . . . . . . . . . . . . 2 pts
P ∝ kT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1pts

∆p1 = mvx1, P1 ≈ nk
√
T0T1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 pts

P1 = nkT1, no points for a0 further . . . . . . . . . . . 1pts
only ∆p1 = mvx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1pts

Answer for a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pts
if some slight mistake . . . . . . . . . . . . . . . . . . . . . . . 0.5pts

Special rule
if ⟨vx0⟩ =

√
3kBT/m (student doesn’t understand

the difference between velocity of the molecule and
the component of the velocity) . . . . . . . . . . . . −0.5pts

Maximal velocity (4 pts)

P1 and P0 depend on the velocity of the disk, P1 drops signi-
ficantly if v ≈ v0, thus vmax ≈ v0 . . . . . . . . . . . . . . . . . . . . . . 4 pts

P ′
0 ≈ ρv2, but P1 stays the same, thus vmax ≈

v0
√

T1/T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2pts
Student understands that at least some pressure de-
pends on the velocity of the disk . . . . . . . . . . . . . .1pts
The velocity is maximal when disk cools to T0 0pts

Justification of slow cooling (1 pts)

Estimation of times ta and tc given. . . . . . . . . . . . . . . . . . . .1 pts
Student explicitly writes that T ′

1 ≈ T1 but doesn’t
prove it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5pts

3 Superconducting mesh
The most important physics to consider is that the magnetic
flux through the superconducting mesh is effectively locally
locked in place. Consider this effect before anything else.
Once the mesh is cooled to the superconducting state the
magnetic field as a function of position on the mesh can-
not be varied, regardless of the change in location of the di-
pole. Since the magnetic field is effectively specified along
this superconducting plane, the problem reduces to a bound-
ary value problem that is traditionally solved by the method
of images.

First, consider what happens if the physical dipole is moved
far away from the mesh. An image dipole must be located
that fixes the magnetic field to be unchanged. This can be
done with an image dipole that is located a distance a behind
the mesh, and it must have the same orientation m. Now
bring back the original dipole, placing it a distance b. It is
necessary to cancel out the field from this original, but now
displaced, dipole with an opposite dipole −m placed behind
the mesh at a distance b.

Double check your work. If the original dipole is placed
at the original location a, then there is no need for image
charges, and they should cancel out. Indeed, the two image
dipoles will, as they have opposite orientations.

The force between the dipole and the image charges must
be determined. Though it might be possible to write down
these answers quickly, the derivation is shown below.

Consider first that a magnetic dipole moment m can be
thought of as a pair of magnetic monopoles of strength qm and
−qm separated by a distance d such that m = qmd. Determine
the magnetic field strength a distance x ≫ d away from the
dipole:

B =
µ0

4π

qm
x2

+
µ0

4π

−qm
(x+ d)2

.

It should be clear that qm is at the origin and −qm is a dis-
tance d farther away from the reference point x where the
field B is being determined. This expression is exact.

The second term can be subjected to a binomial expansion
and then

B ≈ µ0

4π

qm
x2

− µ0

4π

qm
x2

(
1− 2

d

x

)
=

µ0

2π

qmd

x3
=

µ0

2π

m

x3

Now consider the magnetic force on a dipole at the location
x in a non-uniform field B, which is given by

F = −qmB(x) + qmB(x+ d)

which can be approximated by a Taylor expansion of B,

F ≈ −qmB(x) + qm

(
B(x) + d

dB

dx

∣∣∣∣
x

)
= qmd

(
−3µ0

2π

m

x4

)
= −3µ0

2π

m2

x4

The negative sign means that two parallel identical dipoles
separated by a distance x will attract.

Returning to the problem, the physical dipole at b will be
attracted to the image dipole at location −a and repelled
from the image dipole at −b, so

F = −3µ0

2π

m2

(b+ a)4
+
3µ0

2π

m2

(b+ b)4
=

3µ0m
2

2π

(
1

16b4
− 1

(a+ b)4

)
,

where a negative sign means that the physical dipole feels
attraction toward the mesh.



It is entertaining to consider what happens if b is almost
the same as a, say b = a+ δ. In this case,

F =
3µ0m

2

2π

(
1

16(a+ δ)4
− 1

(2a+ δ)4

)
,

or
F ≈ 3µ0m

2

2π

1

16a4

((
1− 4

δ

a

)
−
(
1− 4

δ/2

a

))
,

which simplifies further into

F ≈ −3µ0m
2

16πa5
δ.

Now to interpret. A negative force here is a force of attraction
toward the mesh. A positive δ is moving the physics dipole
away from the mesh. As such, the force is a linear restoring
force, and slight disturbances to the physical dipole will result
in simple harmonic oscillations about the original position.

Grading scheme

1.5 Recognition of nature of problem

– Recognize flux trapping in superconductor (1.0 pt)
– Recognize that flux trapping creates a boundary

value problem (0.5 pt)

4.0 Recognize that the boundary value problem requires two
image dipoles

– First image dipole to create original B field on mesh
(0.5 pt)

– Correct location of first image dipole (0.5 pt)
– Correct magnitude of first image dipole (0.5 pt)
– Correct orientation of first image dipole (0.5 pt)
– Second image dipole to cancel new B field on mesh

(0.5 pt)
– Correct location of second image dipole (0.5 pt)
– Correct magnitude of first image dipole (0.5 pt)
– Correct orientation of first image dipole (0.5 pt)

2.0 Determine the force between two dipoles

– Determine B field a distance from a dipole (1 pt)
– Determine force on a dipole in a non-uniform B field

(1 pt)

2.5 Determine the force between the physical dipole and the
mesh

– Correct magnitude and direction of force from im-
age dipole one (1 pt)

– Correct magnitude and direction of force from im-
age dipole two (1 pt)

– Correct magnitude and direction of force (0.5 pt)

Some notes:

• Dimensionally correct expression with no shown work
but have wrong prefactor get zero marks

• Dimensionally correct expression that show work but
have wrong prefactor caused from clear trivial math mis-
take get 1/2 marks.

• Dimensionally correct expression that whow work but
have wrong prefactor caused from serious math mistake
or any physics mistake get zero marks.

• Dimensionally incorrect expression with no shown work
get zero marks

• Dimensionally incorrect answers that show work get zero
marks

• Follow on errors that use dimensionally correct, but
wrong, derived inputs are not penalized further.

• Follow on errors that use dimensionally incorrect derived
inputs are penalized half marks each time the input is
used.

• Writing a formula incorrectly without showing the deriv-
ation and using it as an input is not considered a follow
on error, but is instead a non-trivial error with a result
of zero marks for that part.

• Ambiguous locations, magnitudes, or orientations receive
zero marks.

• Correctly identifying the locations, magnitudes, or ori-
entations of both of the two image dipoles without clearly
specifying why will receive full 1.5 points for recognizing
the nature of the problem.

• Correctly identifying the locations, magnitudes, or ori-
entations of only one of the image dipoles without clearly
specifying why will receive 0.5 points for recognizing the
nature of the problem.


